Lecture 6: April 5, 2023

Lecturer: Ali Vakilian (notes based on notes from Madhur Tulsiani and Yury Makarychev)

1 Singular Value Decomposition

Let *V*, *W* be finite-dimensional inner product spaces and let φ : *V* \rightarrow *W* be a linear transformation. Since the domain and range of φ are different, we cannot analyze it in terms of eigenvectors. However, we can use the spectral theorem to analyze the operators $\varphi^* \varphi : V \rightarrow V$ and $\varphi \varphi^* : W \rightarrow W$ and use their eigenvectors to derive a nice decomposition of φ . This is known as the singular value decomposition (SVD) of φ .

Proposition 1.1 Let $\varphi : V \to W$ be a linear transformation. Then $\varphi^* \varphi : V \to V$ and $\varphi \varphi^* : W \to W$ are self-adjoint positive semidefinite linear operators with the same non-zero eigenvalues.

Proof: The self-adjointness and positive semidefiniteness of the operators $\varphi \varphi^*$ and $\varphi^* \varphi$ follows from the exercise characterizing positive semidefinite operators in the previous lecture. Specifically, we can see that for any $w_1, w_2 \in W$,

 $\langle w_1, \varphi \varphi^*(w_2) \rangle = \langle w_1, \varphi(\varphi^*(w_2)) \rangle = \langle \varphi^*(w_1), \varphi^*(w_2) \rangle = \langle \varphi \varphi^*(w_1), w_2 \rangle.$

This gives that $\varphi \varphi^*$ is self-adjoint. Similarly, we get that for any $w \in W$

$$\langle w, \varphi \varphi^*(w) \rangle = \langle w, \varphi(\varphi^*(w)) \rangle = \langle \varphi^*(w), \varphi^*(w) \rangle \geq 0.$$

This implies that the Rayleigh quotient $\mathcal{R}_{\varphi\varphi^*}$ is non-negative for any $w \neq 0$ which implies that $\varphi\varphi^*$ is positive semidefinite. The proof for $\varphi^*\varphi$ is identical (using the fact that $(\varphi^*)^* = \varphi$).

Let $\lambda \neq 0$ be an eigenvalue of $\varphi^* \varphi$. Then there exists $v \neq 0$ such that $\varphi^* \varphi(v) = \lambda \cdot v$. Applying φ on both sides, we get $\varphi \varphi^*(\varphi(v)) = \lambda \cdot \varphi(v)$. However, note that if $\lambda \neq 0$ then $\varphi(v)$ cannot be zero (why?) Thus $\varphi(v)$ is an eigenvector of $\varphi \varphi^*$ with the same eigenvalue λ .

We can notice the following from the proof of the above proposition.

Proposition 1.2 Let v be an eigenvector of $\varphi^* \varphi$ with eigenvalue $\lambda \neq 0$. Then $\varphi(v)$ is an eigenvector of $\varphi \varphi^*$ with eigenvalue λ . Similarly, if w is an eigenvector of $\varphi \varphi^*$ with eigenvalue $\lambda \neq 0$, then $\varphi^*(w)$ is an eigenvector of $\varphi^* \varphi$ with eigenvalue λ .

We can also conclude the following.

Proposition 1.3 Let the subspaces V_{λ} and W_{λ} be defined as

$$V_{\lambda} := \{ v \in V \mid \varphi^* \varphi(v) = \lambda \cdot v \}$$
 and $W_{\lambda} := \{ w \in W \mid \varphi \varphi^*(w) = \lambda \cdot w \}$.

Then for any $\lambda \neq 0$ *,* dim $(V_{\lambda}) = \dim(W_{\lambda})$ *.*

Using the above properties, we can prove the following useful proposition, which extends the concept of eigenvectors to cases when we have $\varphi : V \to W$ and it might not be possible to define eigenvectors since $V \neq W$ (also φ may not be self-adjoint so we may not get orthonormal eigenvectors).

Proposition 1.4 Let $\sigma_1^2 \ge \sigma_2^2 \ge \cdots \ge \sigma_r^2 > 0$ be the non-zero eigenvalues of $\varphi^*\varphi$, and let v_1, \ldots, v_r be a corresponding orthonormal eigenvectors (since $\varphi^*\varphi$ is self-adjoint, these are a subset of some orthonormal eigenbasis). For w_1, \ldots, w_r defined as $w_i = \varphi(v_i) / \sigma_i$, we have that

- 1. $\{w_1, \ldots, w_r\}$ form an orthonormal set.
- 2. For all $i \in [r]$

$$\varphi(v_i) = \sigma_i \cdot w_i$$
 and $\varphi^*(w_i) = \sigma_i \cdot v_i$

Proof: For any $i, j \in [r], i \neq j$, we note that

$$egin{aligned} &\langle w_i, w_j
angle \ &= \ \left\langle rac{arphi(v_i)}{\sigma_i}, rac{arphi(v_j)}{\sigma_j}
ight
angle \ &= \ rac{1}{\sigma_i \sigma_j} \cdot \left\langle arphi(v_i), arphi(v_j)
ight
angle \ &= \ rac{1}{\sigma_i \sigma_j} \cdot \left\langle arphi_i, v_j
ight
angle \ &= \ rac{\sigma_i}{\sigma_j} \cdot \left\langle v_i, v_j
ight
angle \ &= \ 0 \,. \end{aligned}$$

Thus, the vectors $\{w_1, ..., w_r\}$ form an orthonormal set. We also get $\varphi(v_i) = \sigma_i \cdot w_i$ from the definition of w_i . For proving $\varphi^*(w_i) = v_i$, we note that

$$arphi^*(w_i) \;=\; arphi^*\left(rac{arphi(v_i)}{\sigma_i}
ight) \;=\; rac{1}{\sigma_i}\cdotarphi^*arphi(v_i) \;=\; rac{\sigma_i^2}{\sigma_i}\cdot v_i \;=\; \sigma_i\cdot v_i$$
 ,

which completes the proof.

The values $\sigma_1, \ldots, \sigma_r$ are known as the (non-zero) singular values of φ . For each $i \in [r]$, the vector v_i is known as the right singular vector and w_i is known as the left singular vector corresponding to the singular value σ_i .

Proposition 1.5 Let *r* be the number of non-zero eigenvalues of $\varphi^* \varphi$. Then,

$$\operatorname{rank}(\varphi) = \operatorname{dim}(\operatorname{im}(\varphi)) = r$$

Using the above, we can write φ in a particularly convenient form. We first need the following definition.

Definition 1.6 *Let* V, W *be inner product spaces and let* $v \in V$, $w \in W$ *be any two vectors. The* outer product of w with v, denoted as $|w\rangle \langle v|$, is a linear transformation from V to W such that

$$|w\rangle \langle v|(u) := \langle v, u \rangle \cdot w.$$

In matrix form, over the reals, the outer product of w with v is the rank-1 matrix wv^T , as opposed to the inner product w^Tv . And then the statement is that $(wv^T)u = w(v^Tu)$. Note that if ||v|| = 1, then $|w\rangle \langle v|(v) = w$ and $|w\rangle \langle v|(u) = 0$ for all $u \perp v$.

Exercise 1.7 Show that for any $v \in V$ and $w \in W$, we have

$$\operatorname{rank}(|w\rangle \langle v|) = \dim (\operatorname{im}(|w\rangle \langle v|)) = 1.$$

We can then write $\varphi : V \to W$ in terms of outer products of its singular vectors.

Proposition 1.8 Let V, W be finite dimensional inner product spaces and let $\varphi : V \to W$ be a linear transformation with non-zero singular values $\sigma_1, \ldots, \sigma_r$, right singular vectors v_1, \ldots, v_r and left singular vectors w_1, \ldots, w_r . Then,

$$\varphi = \sum_{i=1}^r \sigma_i \cdot \ket{w_i} \langle v_i | .$$

Exercise 1.9 If $\varphi : V \to V$ is a self-adjoint operator with dim(V) = n, then the real spectral theorem proves the existence of an orthonormal basis of eigenvectors, say $\{v_1, \ldots, v_n\}$ with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$. Check that in this case, we can write φ as

$$\varphi \;=\; \sum_{i=1}^n \lambda_i \cdot \ket{v_i} ig \langle v_i | \;.$$

Note that while the above decomposition has possibly negative coefficients (the λ_i s), the singular value decomposition only has positive coefficients (the σ_i s).