Lecture 6: April 5, 2023
Lecturer: Ali Vakilian (notes based on notes from Madhur Tulsiani and Yury Makarychev)

1 Singular Value Decomposition

Let V, W be finite-dimensional inner product spaces and let $\varphi: V \rightarrow W$ be a linear transformation. Since the domain and range of φ are different, we cannot analyze it in terms of eigenvectors. However, we can use the spectral theorem to analyze the operators $\varphi^{*} \varphi: V \rightarrow V$ and $\varphi \varphi^{*}: W \rightarrow W$ and use their eigenvectors to derive a nice decomposition of φ. This is known as the singular value decomposition (SVD) of φ.

Proposition 1.1 Let $\varphi: V \rightarrow W$ be a linear transformation. Then $\varphi^{*} \varphi: V \rightarrow V$ and $\varphi \varphi^{*}$: $W \rightarrow W$ are self-adjoint positive semidefinite linear operators with the same non-zero eigenvalues.

Proof: The self-adjointness and positive semidefiniteness of the operators $\varphi \varphi^{*}$ and $\varphi^{*} \varphi$ follows from the exercise characterizing positive semidefinite operators in the previous lecture. Specifically, we can see that for any $w_{1}, w_{2} \in W$,

$$
\left\langle w_{1}, \varphi \varphi^{*}\left(w_{2}\right)\right\rangle=\left\langle w_{1}, \varphi\left(\varphi^{*}\left(w_{2}\right)\right)\right\rangle=\left\langle\varphi^{*}\left(w_{1}\right), \varphi^{*}\left(w_{2}\right)\right\rangle=\left\langle\varphi \varphi^{*}\left(w_{1}\right), w_{2}\right\rangle .
$$

This gives that $\varphi \varphi^{*}$ is self-adjoint. Similarly, we get that for any $w \in W$

$$
\left\langle w, \varphi \varphi^{*}(w)\right\rangle=\left\langle w, \varphi\left(\varphi^{*}(w)\right)\right\rangle=\left\langle\varphi^{*}(w), \varphi^{*}(w)\right\rangle \geq 0 .
$$

This implies that the Rayleigh quotient $\mathcal{R}_{\varphi \varphi^{*}}$ is non-negative for any $w \neq 0$ which implies that $\varphi \varphi^{*}$ is positive semidefinite. The proof for $\varphi^{*} \varphi$ is identical (using the fact that $\left(\varphi^{*}\right)^{*}=$ $\varphi)$.
Let $\lambda \neq 0$ be an eigenvalue of $\varphi^{*} \varphi$. Then there exists $v \neq 0$ such that $\varphi^{*} \varphi(v)=\lambda \cdot v$. Applying φ on both sides, we get $\varphi \varphi^{*}(\varphi(v))=\lambda \cdot \varphi(v)$. However, note that if $\lambda \neq 0$ then $\varphi(v)$ cannot be zero (why?) Thus $\varphi(v)$ is an eigenvector of $\varphi \varphi^{*}$ with the same eigenvalue λ.

We can notice the following from the proof of the above proposition.
Proposition 1.2 Let v be an eigenvector of $\varphi^{*} \varphi$ with eigenvalue $\lambda \neq 0$. Then $\varphi(v)$ is an eigenvector of $\varphi \varphi^{*}$ with eigenvalue λ. Similarly, if w is an eigenvector of $\varphi \varphi^{*}$ with eigenvalue $\lambda \neq 0$, then $\varphi^{*}(w)$ is an eigenvector of $\varphi^{*} \varphi$ with eigenvalue λ.

We can also conclude the following.
Proposition 1.3 Let the subspaces V_{λ} and W_{λ} be defined as

$$
V_{\lambda}:=\left\{v \in V \mid \varphi^{*} \varphi(v)=\lambda \cdot v\right\} \text { and } W_{\lambda}:=\left\{w \in W \mid \varphi \varphi^{*}(w)=\lambda \cdot w\right\} .
$$

Then for any $\lambda \neq 0, \operatorname{dim}\left(V_{\lambda}\right)=\operatorname{dim}\left(W_{\lambda}\right)$.
Using the above properties, we can prove the following useful proposition, which extends the concept of eigenvectors to cases when we have $\varphi: V \rightarrow W$ and it might not be possible to define eigenvectors since $V \neq W$ (also φ may not be self-adjoint so we may not get orthonormal eigenvectors).

Proposition 1.4 Let $\sigma_{1}^{2} \geq \sigma_{2}^{2} \geq \cdots \geq \sigma_{r}^{2}>0$ be the non-zero eigenvalues of $\varphi^{*} \varphi$, and let v_{1}, \ldots, v_{r} be a corresponding orthonormal eigenvectors (since $\varphi^{*} \varphi$ is self-adjoint, these are a subset of some orthonormal eigenbasis). For w_{1}, \ldots, w_{r} defined as $w_{i}=\varphi\left(v_{i}\right) / \sigma_{i}$, we have that

1. $\left\{w_{1}, \ldots, w_{r}\right\}$ form an orthonormal set.
2. For all $i \in[r]$

$$
\varphi\left(v_{i}\right)=\sigma_{i} \cdot w_{i} \quad \text { and } \quad \varphi^{*}\left(w_{i}\right)=\sigma_{i} \cdot v_{i}
$$

Proof: For any $i, j \in[r], i \neq j$, we note that

$$
\begin{aligned}
\left\langle w_{i}, w_{j}\right\rangle=\left\langle\frac{\varphi\left(v_{i}\right)}{\sigma_{i}}, \frac{\varphi\left(v_{j}\right)}{\sigma_{j}}\right\rangle=\frac{1}{\sigma_{i} \sigma_{j}} \cdot\left\langle\varphi\left(v_{i}\right), \varphi\left(v_{j}\right)\right\rangle & =\frac{1}{\sigma_{i} \sigma_{j}} \cdot\left\langle\varphi^{*} \varphi\left(v_{i}\right), v_{j}\right\rangle \\
& =\frac{\sigma_{i}}{\sigma_{j}} \cdot\left\langle v_{i}, v_{j}\right\rangle=0
\end{aligned}
$$

Thus, the vectors $\left\{w_{1}, \ldots, w_{r}\right\}$ form an orthonormal set. We also get $\varphi\left(v_{i}\right)=\sigma_{i} \cdot w_{i}$ from the definition of w_{i}. For proving $\varphi^{*}\left(w_{i}\right)=v_{i}$, we note that

$$
\varphi^{*}\left(w_{i}\right)=\varphi^{*}\left(\frac{\varphi\left(v_{i}\right)}{\sigma_{i}}\right)=\frac{1}{\sigma_{i}} \cdot \varphi^{*} \varphi\left(v_{i}\right)=\frac{\sigma_{i}^{2}}{\sigma_{i}} \cdot v_{i}=\sigma_{i} \cdot v_{i}
$$

which completes the proof.
The values $\sigma_{1}, \ldots, \sigma_{r}$ are known as the (non-zero) singular values of φ. For each $i \in[r]$, the vector v_{i} is known as the right singular vector and w_{i} is known as the left singular vector corresponding to the singular value σ_{i}.

Proposition 1.5 Let r be the number of non-zero eigenvalues of $\varphi^{*} \varphi$. Then,

$$
\operatorname{rank}(\varphi)=\operatorname{dim}(\operatorname{im}(\varphi))=r .
$$

Using the above, we can write φ in a particularly convenient form. We first need the following definition.

Definition 1.6 Let V, W be inner product spaces and let $v \in V, w \in W$ be any two vectors. The outer product of w with v, denoted as $|w\rangle\langle v|$, is a linear transformation from V to W such that

$$
|w\rangle\langle v|(u):=\langle v, u\rangle \cdot w .
$$

In matrix form, over the reals, the outer product of w with v is the rank-1 matrix $w v^{T}$, as opposed to the inner product $w^{T} v$. And then the statement is that $\left(w v^{T}\right) u=w\left(v^{T} u\right)$.
Note that if $\|v\|=1$, then $|w\rangle\langle v|(v)=w$ and $|w\rangle\langle v|(u)=0$ for all $u \perp v$.
Exercise 1.7 Show that for any $v \in V$ and $w \in W$, we have

$$
\operatorname{rank}(|w\rangle\langle v|)=\operatorname{dim}(\operatorname{im}(|w\rangle\langle v|))=1
$$

We can then write $\varphi: V \rightarrow W$ in terms of outer products of its singular vectors.
Proposition 1.8 Let V, W be finite dimensional inner product spaces and let $\varphi: V \rightarrow W$ be a linear transformation with non-zero singular values $\sigma_{1}, \ldots, \sigma_{r}$, right singular vectors v_{1}, \ldots, v_{r} and left singular vectors w_{1}, \ldots, w_{r}. Then,

$$
\varphi=\sum_{i=1}^{r} \sigma_{i} \cdot\left|w_{i}\right\rangle\left\langle v_{i}\right| .
$$

Exercise 1.9 If $\varphi: V \rightarrow V$ is a self-adjoint operator with $\operatorname{dim}(V)=n$, then the real spectral theorem proves the existence of an orthonormal basis of eigenvectors, say $\left\{v_{1}, \ldots, v_{n}\right\}$ with corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Check that in this case, we can write φ as

$$
\varphi=\sum_{i=1}^{n} \lambda_{i} \cdot\left|v_{i}\right\rangle\left\langle v_{i}\right|
$$

Note that while the above decomposition has possibly negative coefficients (the $\lambda_{i} s$), the singular value decomposition only has positive coefficients (the σ_{i} s).

